

Understanding Mastitis Economics

Jeffrey Bewley
University of Kentucky

Costs of Mastitis

- Milk production losses
- Drugs
- Discarded milk
- Veterinary services

- Bonuses
- Labor
- Culling
- Other diseases

National Mastitis Council Estimated Annual Losses Due to Mastitis

Industry Level Costs

 Mastitis costs the U.S. dairy industry about \$1.7 to 2 billion annually

•SO WHAT!?!?!

Historic View

- "Cost of disease"
- Used for policy decisions to support importance of disease for research
- Limited to direct costs (i.e. production)
- Ignore global economic effects of disease reduction
- Generally over-predictions
- Reduce credibility in the minds of farmers

Definitions

$$C = L + E$$

- Costs (C): represent all economic effects of disease
- Loss (L): benefit is taken away (discarded or unrealized milk, feelings/stress from death)
- Expenditure (E): extra inputs into production (drug costs, preventative measures)

The Loss Expenditure Frontier

McInerney et al., 1992, Prev. Vet. Med, 13:137-154

Loss-Expenditure Frontier Example

- Subclinical mastitis costs (£172.7 million annually in 1988)
- If everyone operated at the economic optimum, costs would be £159.6 million

 Thus, disease cost could be reduced by £23.1 million by using most efficient procedures

Challenges in Estimating Mastitis Economics

- Variation by country or region
 - -Milk quota vs. Free market
 - –Varying pricing strategies
 - —Costs of drugs/veterinary services
- Changes in milk quality premiums
- Time value of money
- Difficult to obtain estimates for models
- Pathogen variation
- Farm variation

Cost of Culling

- Oversimplified methodology: difference between slaughter value and cost of replacement
- Correct methodology: retention pay-off
- Retention pay-off is the difference between:
 - The predicted future income of the animal in question
 - The predicted future income of her potential replacement
- Requires the use of simulation and/or dynamic programming

Treatment Economics Factors

- Drug Costs
- Withdrawal period
- Treatment duration
- Pathogen
- Antibiotic susceptibility
- Losses if left untreated

- Cow age
- Production level
- Immune status
- Pregnancy status
- Genetic potential
- Previous infections

Staph aureus

Treatment of Chronic Subclinical Intramammary Infections

Swinkels et al., 2005, Journal of Dairy Research, 72:75-85

Conclusions

- Mastitis has a major impact on dairy farm profitability
- Impact varies by mastitis pathogen
- Most of the impact of mastitis is "invisible"
- We need to move to farm-specific estimates

Any Questions?

